Influence of Seawater Characteristics on Antibiotic Pollutant Removal via Fe(II)-Peroxymonosulfate-Modified Clay

Author:

Jiang Yuxin12,Cao Xihua23ORCID,Li Fang4,Song Xiuxian2

Affiliation:

1. College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

2. CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

3. Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China

4. College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract

Antibiotics have been identified as emerging pollutants, and they increasingly threaten the safety of mariculture; thus, effective treatment methods are urgently needed. In this study, Fe(II)-peroxymonosulfate-modified clay (Fe-PMS-MC), an effective mineral complex for harmful algal bloom control, was tested for sulfamethoxazole (SMX) removal from seawater. The results showed that SMX removal efficiency increased gradually from 42.3% to 100% in seawater in 6 h as the Fe-PMS-MC dose increased from 0.1 g/L to 1.0 g/L; this removal was more efficient than that in freshwater. Both an increase in temperature and the addition of inorganic anions such as Cl−, HCO3−, and SO42− improved the SMX removal efficiency; in contrast, there was no noticeable influence of a pH change from 3.0 to 9.0 or of Heterosigma akashiwo biomass addition from 103 cells/mL to 105 cells/mL. Oxidation was the main mechanism for the removal of SMX by Fe-PMS-MC treatment, and the mechanisms included radical oxidation and non-radical oxidation. PMS was the key component in Fe-PMS-MC for the production of radicals, which increased with temperature. Similarly, both radical oxidation and non-radical oxidation increased when PMS was attacked by Cl−, HCO3−, and SO42− in seawater.

Funder

the China National Key R&D Program during the 14th Five-year Plan Period

the National Natural Science Foundation of China

the Key Research Program of the Center for Ocean Mega-Science Chinese Academy of Sciences

the National Key Research and Development Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3