Rapid Prediction of Nutrient Concentration in Citrus Leaves Using Vis-NIR Spectroscopy

Author:

Acosta Maylin1ORCID,Quiñones Ana1ORCID,Munera Sandra2,de Paz José Miguel1ORCID,Blasco José3ORCID

Affiliation:

1. Centro para el Desarrollo de la Agricultura Sostenible, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, km 10.7, 46113 Moncada, Valencia, Spain

2. Departamento de Ingeniería Gráfica, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Valencia, Spain

3. Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, km 10.7, 46113 Moncada, Valencia, Spain

Abstract

The nutritional diagnosis of crops is carried out through costly foliar ionomic analysis in laboratories. However, spectroscopy is a sensing technique that could replace these destructive analyses for monitoring nutritional status. This work aimed to develop a calibration model to predict the foliar concentrations of macro and micronutrients in citrus plantations based on rapid non-destructive spectral measurements. To this end, 592 ‘Clementina de Nules’ citrus leaves were collected during several months of growth. In these foliar samples, the spectral absorbance (430–1040 nm) was measured using a portable spectrometer, and the foliar ionomics was determined by emission spectrometry (ICP-OES) for macro and micronutrients, and the Kjeldahl method to quantify N. Models based on partial least squares regression (PLS-R) were calibrated to predict the content of macro and micronutrients in the leaves. The determination coefficients obtained in the model test were between 0.31 and 0.69, the highest values being found for P, K, and B (0.60, 0.63, and 0.69, respectively). Furthermore, the important P, K, and B wavelengths were evaluated using the weighted regression coefficients (BW) obtained from the PLS-R model. The results showed that the selected wavelengths were all in the visible region (430–750 nm) related to foliage pigments. The results indicate that this technique is promising for rapid and non-destructive foliar macro and micronutrient prediction.

Funder

PNDR

EU

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference47 articles.

1. Food and Agriculture Organization (FAO) (2023, July 07). Citrus Fruit. Fresh and Processed Statistical Bulletin 2020. Market and Trade Commodities. Available online: https://www.fao.org/markets-and-trade/commodities/citrus/en.

2. United States Department of Agriculture (USDA) (2023, July 07). Citrus: World Market and Trade. Office of Global Analysis. Foreign Agriculture Service, Available online: https://www.fas.usda.gov/data/citrus-world-markets-and-trade.

3. United States Department of Agriculture (USDA) (2023, July 07). Citrus Annual. Foreign Agricultural Service, Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Citrus%20Annual_Madrid_European%20Union_E42023-0001.pdf.

4. Marschner, P. (2012). Marschner’s Mineral Nutrition of Higher Plants, Elsevier.

5. Ecophysiology of the Internal Cycling of Nitrogen for Tree Growth;Millard;Z. Pflanzenernahr. Bodenkd.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3