Some Common Fixed Circle Results on Metric and 𝕊-Metric Spaces with an Application to Activation Functions

Author:

Taş Nihal1ORCID,Kaplan Elif2ORCID,Santina Dania3,Mlaiki Nabil3ORCID,Shatanawi Wasfi345ORCID

Affiliation:

1. Department of Mathematics, Balıkesir University, 10145 Balıkesir, Türkiye

2. Department of Mathematics, Ondokuz Mayıs University, 55200 Samsun, Türkiye

3. Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

4. Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan

5. Department of Medical Research, China Medical University, Taichung 40402, Taiwan

Abstract

In this paper, we modify various contractive conditions (C.C.)s such as Ciric type (C.C.), Rhoades type (C.C.), Seghal type (C.C.), Bianchini type (C.C.), and Berinde type (C.C.) for two self-mappings, considering that the contractive property plays a major role in establishing a fixed circle (F.C.) on both metric spaces (M-s) and S-(M-s) where the symmetry condition is satisfied, and we utilize them to establish a common (F.C.). We prove new (F.C.) results on both (M-s) and S-(M-s) with illustrative examples. Finally, we provide an application to activation functions such as rectified linear unit activation functions and parametric rectified linear unit activation functions.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference32 articles.

1. A generalization of Banach’s contraction principle;Ciric;Proc. Am. Math. Soc.,1974

2. Generalized contractions and fixed-point theorems;Ciric;Publ. L’Institut Matheematique,1971

3. A comparison of various definitions of contractive mappings;Rhoades;Trans. Am. Math. Soc.,1977

4. On fixed and periodic points for a class of mappings;Sehgal;J. Lond. Math. Soc.,1972

5. Su un problema di S. Reich aguardante la teoría dei punti fissi;Bianchini;Boll. dell’Unione Mat. Ital.,1972

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3