Intelligent Computing Collaboration for the Security of the Fog Internet of Things

Author:

Zhao Hong1ORCID,Sun Guowei1,Li Weiheng1,Zuo Peiliang1ORCID,Li Zhaobin1,Wei Zhanzhen1

Affiliation:

1. Department of Electronic and Communication Engineering, Beijing Institute of Electronic Science and Technology (BESTI), Beijing 100070, China

Abstract

The application of fog Internet of Things (IoT) technology helps solve the problem of weak computing power faced by IoT terminals. Due to asymmetric differences in communication methods, sensing data offloading from IoT terminals to fog and cloud layers faces different security issues, and both processes should be protected through certain data transmission protection measures. To take advantage of the relative asymmetry between cloud, fog, and sensing layers, this paper considers using physical layer security technology and encryption technology to ensure the security of the sensing data unloading process. An efficient resource allocation method based on deep reinforcement learning is proposed to solve the problem of channel and power allocation in fog IoT scenarios, as well as the selection of unloading destinations. This problem, which is NP-hard, belongs to the attribute of mixed integer nonlinear programming. Meanwhile, the supporting parameters of the method, including state space, action space, and rewards, are all adaptively designed based on scene characteristics and optimization goals. The simulation and analysis show that the proposed method possesses good convergence characteristics. Compared to several heuristic methods, the proposed method reduces latency by at least 18.7% on the premise that the transmission of sensing data is securely protected.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Security and Privacy in Cloud – Based Healthcare Data Through Machine Learning;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

2. Distributed Deep Reinforcement Learning for Autonomous Iot Healthcare Devices in the Cloud;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3