Why You Cannot Rank First: Modifications for Benchmarking Six-Degree-of-Freedom Visual Localization Algorithms

Author:

Han Sheng12ORCID,Gao Wei12ORCID,Hu Zhanyi12

Affiliation:

1. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China

2. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Robust and precise visual localization over extended periods of time poses a formidable challenge in the current domain of spatial vision. The primary difficulty lies in effectively addressing significant variations in appearance caused by seasonal changes (summer, winter, spring, autumn) and diverse lighting conditions (dawn, day, sunset, night). With the rapid development of related technologies, more and more relevant datasets have emerged, which has also promoted the progress of 6-DOF visual localization in both directions of autonomous vehicles and handheld devices.This manuscript endeavors to rectify the existing limitations of the current public benchmark for long-term visual localization, especially in the part on the autonomous vehicle challenge. Taking into account that autonomous vehicle datasets are primarily captured by multi-camera rigs with fixed extrinsic camera calibration and consist of serialized image sequences, we present several proposed modifications designed to enhance the rationality and comprehensiveness of the evaluation algorithm. We advocate for standardized preprocessing procedures to minimize the possibility of human intervention influencing evaluation results. These procedures involve aligning the positions of multiple cameras on the vehicle with a predetermined canonical reference system, replacing the individual camera positions with uniform vehicle poses, and incorporating sequence information to compensate for any failed localized poses. These steps are crucial in ensuring a just and accurate evaluation of algorithmic performance. Lastly, we introduce a novel indicator to resolve potential ties in the Schulze ranking among submitted methods. The inadequacies highlighted in this study are substantiated through simulations and actual experiments, which unequivocally demonstrate the necessity and effectiveness of our proposed amendments.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3