A Machine Learning Architecture Replacing Heavy Instrumented Laboratory Tests: In Application to the Pullout Capacity of Geosynthetic Reinforced Soils

Author:

Ali TabishORCID,Haider WaseemORCID,Ali Nazakat,Aslam Muhammad

Abstract

For economical and sustainable benefits, conventional retaining walls are being replaced by geosynthetic reinforced soil (GRS). However, for safety and quality assurance purposes, prior tests of pullout capacities of these materials need to be performed. Conventionally, these tests are conducted in a laboratory with heavy instruments. These tests are time-consuming, require hard labor, are prone to error, and are expensive as a special pullout machine is required to perform the tests and acquire the data by using a lot of sensors and data loggers. This paper proposes a data-driven machine learning architecture (MLA) to predict the pullout capacity of GRS in a diverse environment. The results from MLA are compared with actual laboratory pullout capacity tests. Various input variables are considered for training and testing the neural network. These input parameters include the soil physical conditions based on water content and external loading applied. The soil used is a locally available weathered granite soil. The input data included normal stress, soil saturation, displacement, and soil unit weight whereas the output data contains information about the pullout strength. The data used was obtained from an actual pullout capacity test performed in the laboratory. The laboratory test is performed according to American Society for Testing and Materials (ASTM) standard D 6706-01 with little modification. This research shows that by using machine learning, the same pullout resistance of a geosynthetic reinforced soil can be achieved as in laboratory testing, thus saving a lot of time, effort, and money. Feedforward backpropagation neural networks with a different number of neurons, algorithms, and hidden layers have been examined. The comparison of the Bayesian regularization learning algorithm with two hidden layers and 12 neurons each showed the minimum mean square error (MSE) of 3.02 × 10−5 for both training and testing. The maximum coefficient of regression (R) for the testing set is 0.999 and the training set is 0.999 for the prediction interval of 99%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3