Abstract
Land surface temperature (LST) is a crucial input parameter in the study of land surface water and energy budgets at local and global scales. Because of cloud obstruction, there are many gaps in thermal infrared remote sensing LST products. To fill these gaps, an improved LST reconstruction method for cloud-covered pixels was proposed by building a linking model for the moderate resolution imaging spectroradiometer (MODIS) LST with other surface variables with a random forest regression method. The accumulated solar radiation from sunrise to satellite overpass collected from the surface solar irradiance product of the Feng Yun-4A geostationary satellite was used to represent the impact of cloud cover on LST. With the proposed method, time-series gap-free LST products were generated for Chongqing City as an example. The visual assessment indicated that the reconstructed gap-free LST images can sufficiently capture the LST spatial pattern associated with surface topography and land cover conditions. Additionally, the validation with in situ observations revealed that the reconstructed cloud-covered LSTs have similar performance as the LSTs on clear-sky days, with the correlation coefficients of 0.92 and 0.89, respectively. The unbiased root mean squared error was 2.63 K. In general, the validation work confirmed the good performance of this approach and its good potential for regional application.
Subject
General Earth and Planetary Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献