Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020

Author:

Yu Yining,Xiao Wanxin,Zhang Zhilun,Cheng XiaoORCID,Hui Fengming,Zhao JiechenORCID

Abstract

In data-sparse regions such as the Arctic, atmospheric reanalysis is one of the key tools for understanding rapid climate change at the regional and global scales. The utility of reanalysis datasets based on data assimilation is affected by their accuracy and biases. Therefore, it is important to evaluate their performance. Here, we conduct inter-comparisons of two temperature variables, namely, the 2-m air temperature (Ta) and the surface temperature (Ts), from the widely used ERA-I and ERA5 reanalysis datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) against in situ observations from three international buoy programs (i.e., the International Arctic Buoy Programme (IABP), the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), and the Cold Regions Research and Engineering Laboratory (CRREL)) during 2010–2020 in the Arctic. Overall, the results show that both the ERA-I and ERA5 were well correlated with the buoy observations, with the highest correlation coefficient reaching 0.98. There were generally warm Ta biases for both ERA-I (2.27 ± 3.33 °C) and ERA5 (2.34 ± 3.22 °C) when compared with more than 3000 matching pairs of daily buoy observations. The warm Ta biases of both reanalysis datasets exhibited seasonal variations, reaching the maximum of 3.73 ± 2.84 °C in April and the minimum of 1.36 ± 2.51 °C in September. For Ts, both ERA-I and ERA5 exhibited good consistencies with the buoy observations, but have higher amplitude biases compared with those for Ta, with generally negative biases of −4.79 ± 4.86 °C for ERA-I and −4.11 ± 3.92 °C for ERA5. For both reanalysis datasets, the largest bias of Ts (−11.18 ± 3.08 °C) occurred in December, while the biases were rather small (less than −3 °C) in the warmer months (April to October). The cold Ts biases for ERA-I and ERA5 were probably overestimated due to the location of the surface temperature sensors on the buoys, which may have been affected by snow cover. Both the Ta and Ts biases varied for different buoy programs and different sea ice concentration conditions, yet they exhibited similar trends.

Funder

Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3