Monitoring the Responses of Deciduous Forest Phenology to 2000–2018 Climatic Anomalies in the Northern Hemisphere

Author:

Bórnez KevinORCID,Verger AleixandreORCID,Descals AdriàORCID,Peñuelas JosepORCID

Abstract

Monitoring the phenological responses of deciduous forests to climate is important, due to the increasing frequency and intensity of extreme climatic events associated with climate change and global warming, which will in turn affect vegetation seasonality. We investigated the spatiotemporal patterns of the response of deciduous forests to climatic anomalies in the Northern Hemisphere, using satellite-derived phenological metrics from the Copernicus Global Land Service Leaf Area Index, and multisource climatic datasets for 2000–2018 at resolutions of 0.1°. Thereafter, we assessed the impact of extreme heatwaves and droughts on this deciduous forest phenology. We assumed that changes in the deciduous forest phenology in the Northern Hemisphere for the period 2000–2018 were monotonic, and that temperature and precipitation were the main climatic drivers. Analyses of partial correlations of phenological metrics with the timing of the start of the season (SoS), end of the season (EoS), and climatic variables indicated that changes in preseason temperature played a stronger role than precipitation in affecting the interannual variability of SoS anomalies: the higher the temperature, the earlier the SoS in most deciduous forests in the Northern Hemisphere (mean correlation coefficient of −0.31). Correlations between the SoS and temperature were significantly negative in 57% of the forests, and significantly positive in 15% of the forests (p < 0.05). Both temperature and precipitation contributed to the advance and delay of the EoS. A later EoS was significantly correlated with a positive Standardized Precipitation Evapotranspiration Index (SPEI) at the regional scale (~30% of deciduous forests). The timings of the EoS and SoS shifted by >20 d in response to heatwaves throughout most of Europe in 2003, and in the United States of America in 2012. This study contributes to improve our understanding of the phenological responses of deciduous forests in the Northern Hemisphere to climate change and extreme climate events.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3