Machine Learning and Simulation-Optimization Coupling for Water Distribution Network Contamination Source Detection

Author:

Grbčić LukaORCID,Kranjčević LadoORCID,Družeta SinišaORCID

Abstract

This paper presents and explores a novel methodology for solving the problem of a water distribution network contamination event, which includes determining the exact source of contamination, the contamination start and end times and the injected contaminant concentration. The methodology is based on coupling a machine learning algorithm for predicting the most probable contamination sources in a water distribution network with an optimization algorithm for determining the values of contamination start time, end time and injected contaminant concentration for each predicted node separately. Two slightly different algorithmic frameworks were constructed which are based on the mentioned methodology. Both algorithmic frameworks utilize the Random Forest algorithm for classification of top source contamination node candidates, with one of the frameworks directly using the stochastic fireworks optimization algorithm to determine the contamination start time, end time and injected contaminant concentration for each predicted node separately. The second framework uses the Random Forest algorithm for an additional regression prediction of each top node’s start time, end time and contaminant concentration and is then coupled with the deterministic global search optimization algorithm MADS. Both a small sized (92 potential sources) network with perfect sensor measurements and a medium sized (865 potential sources) benchmark network with fuzzy sensor measurements were used to explore the proposed frameworks. Both algorithmic frameworks perform well and show robustness in determining the true source node, start and end times and contaminant concentration, with the second framework being extremely efficient on the fuzzy sensor measurement benchmark network.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3