Abstract
Biotin is an essential vitamin and critical cofactor in several metabolic pathways, and its deficiency has been linked to several disorders including inflammatory bowel disease (IBD). We previously reported that biotin deficiency (BD) in mice, whether modeled through intestine-specific deletion of biotin transporter (SMVT-icKO) or through a biotin-deficient diet, resulted in intestinal inflammation consistent with an IBD-like phenotype. To assess whether the gut microbiome is associated with these BD-induced changes, we collected stool and intestinal samples from both of these mouse models and utilized them for 16S rRNA gene sequencing. We find that both diet-mediated and deletion-mediated BD result in the expansion of opportunistic microbes including Klebsiella, Enterobacter, and Helicobacter, at the expense of mucus-resident microbes including Akkermansia. Additionally, microbiome dysbiosis resulting from diet-mediated BD precedes the onset of the IBD-like phenotypic changes. Lastly, through the use of predictive metagenomics, we report that the resulting BD-linked microbiome perturbations exhibit increased biotin biosynthesis in addition to several other perturbed metabolic pathways. Altogether, these results demonstrate that biotin deficiency results in a specific microbiome composition, which may favor microbes capable of biotin synthesis and which may contribute to intestinal inflammation.
Funder
Department of Veterans Affairs
VA
National Institutes of Health
Subject
Food Science,Nutrition and Dietetics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献