Methods over Materials: The Need for Sport-Specific Equations to Accurately Predict Fat Mass Using Bioimpedance Analysis or Anthropometry

Author:

Campa FrancescoORCID,Matias Catarina N.,Moro TatianaORCID,Cerullo GiuseppeORCID,Casolo Andrea,Teixeira Filipe J.,Paoli AntonioORCID

Abstract

Bioelectrical impedance analysis (BIA) and anthropometry are considered alternatives to well-established reference techniques for assessing body composition. In team sports, the percentage of fat mass (FM%) is one of the most informative parameters, and a wide range of predictive equations allow for its estimation through both BIA and anthropometry. Although it is not clear which of these two techniques is more accurate for estimating FM%, the choice of the predictive equation could be a determining factor. The present study aimed to examine the validity of BIA and anthropometry in estimating FM% with different predictive equations, using dual X-ray absorptiometry (DXA) as a reference, in a group of futsal players. A total of 67 high-level male futsal players (age 23.7 ± 5.4 years) underwent BIA, anthropometric measurements, and DXA scanning. Four generalized, four athletic, and two sport-specific predictive equations were used for estimating FM% from raw bioelectric and anthropometric parameters. DXA-derived FM% was used as a reference. BIA-based generalized equations overestimated FM% (ranging from 1.13 to 2.69%, p < 0.05), whereas anthropometry-based generalized equations underestimated FM% in the futsal players (ranging from −1.72 to −2.04%, p < 0.05). Compared to DXA, no mean bias (p > 0.05) was observed using the athletic and sport-specific equations. Sport-specific equations allowed for more accurate and precise FM% estimations than did athletic predictive equations, with no trend (ranging from r = −0.217 to 0.235, p > 0.05). Regardless of the instrument, the choice of the equation determines the validity in FM% prediction. In conclusion, BIA and anthropometry can be used interchangeably, allowing for valid FM% estimations, provided that athletic and sport-specific equations are applied.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3