Abstract
Thermal comfort is one of the most important factors for occupant satisfaction and, as a result, for the building energy performance. Decentralized heating and cooling systems, also known as “Personal Environmental Comfort Systems” (PECS), have attracted significant interest in research and industry in recent years. While building simulation software is used in practice to improve the energy performance of buildings, most building simulation applications use the PMV approach for comfort calculations. This article presents a newly developed building controller that uses a holistic approach in the consideration of PECS within the framework of the building simulation software Esp-r. With PhySCo, a dynamic physiology, sensation, and comfort model, the presented building controller can adjust the setpoint temperatures of the central HVAC system as well as control the use of PECS based on the thermal sensation and comfort values of a virtual human. An adaptive building controller with a wide dead-band and adaptive setpoints between 18 to 26 °C (30 °C) was compared to a basic controller with a fixed and narrow setpoint range between 21 to 24 °C. The simulations were conducted for temperate western European climate (Mannheim, Germany), classified as Cfb climate according to Köppen-Geiger. With the adaptive controller, a 12.5% reduction in end-use energy was achieved in winter. For summer conditions, a variation between the adaptive controller, an office chair with a cooling function, and a fan increased the upper setpoint temperature to 30 °C while still maintaining comfortable conditions and reducing the end-use energy by 15.3%. In spring, the same variation led to a 9.3% reduction in the final energy. The combinations of other systems were studied with the newly presented controller.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference69 articles.
1. Klimaschutz. Abkommen von Parishttps://www.bmwi.de/Redaktion/DE/Artikel/Industrie/klimaschutz-abkommen-von-paris.html
2. Dena-Gebäudereport 2021. Fokusthemen zum Klimaschutz im Gebäudebereichhttps://www.dena.de/fileadmin/dena/Publikationen/PDFs/2021/dena-Gebaeudereport_2021_-_Fokusthema_Zahlen__Daten__Fakten.pdf
3. Buildings. A Source of Enormous Untapped Efficiency Potentialhttps://www.iea.org/topics/buildings
4. Increasing thermal comfort of a net-zero energy building inhabitant by optimization of energy consumption
5. Questions and Answers on the Revision of the Energy Performance of Buildings Directivehttps://ec.europa.eu/commission/presscorner/detail/en/QANDA_21_6686
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献