Abstract
Investigating the constructions of borehole heat exchangers with high efficiency (unit heat transfer between the heat carrier and ground) is important. One of the means to improve efficiency is the use of the most efficient construction of the borehole heat exchanger. The paper describes research on borehole heat exchangers’ thermal efficiency, which is mainly characterized by parameters obtained from a thermal response test: effective thermal conductivity and borehole thermal resistivity. The borehole heat exchangers of the Laboratory of Geoenergetics in Poland were studied. Based on thermal response test interpretation and empirical equations, one of which is proprietary, the heat transfer is calculated independent of the duration of the thermal response test. Other conditions for using borehole heat exchangers in downtowns are discussed. The research aims to determine the best borehole heat exchanger design from five basic possibilities studied. A lack of unequivocal statements regarding this matter in the literature was observed. The influence of the interpretation method on the research results is determined. A single U-tube system filled with gravel is shown to be the most advantageous design by a very small margin. The applied interpretation methods, however, confirm the hitherto ambiguity in the selection of the best construction. The maximum heat carrier temperature at the end of thermal response tests was 32 °C for a geological profile mostly made up of clay (low thermal conductivity) and 23 °C for Carpathian flysch (sandstones and shales, with a higher value of conductivity).
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献