2-Stroke RCCI Engines for Passenger Cars

Author:

Mattarelli EnricoORCID,Rinaldini Carlo Alberto,Marmorini Luca,Caprioli StefanoORCID,Legrottaglie Francesco,Scrignoli FrancescoORCID

Abstract

Reactivity Controlled Compression Ignition (RCCI) is one of the most promising solutions among the low temperature combustion concepts, in terms of thermal efficiency and pollutant emissions. However, for values of brake mean effective pressure higher than 10 bar, in-cylinder peak pressure rise rates tend to be too high, limiting the specific power of any 4-Stroke (4S) engine. Such a limitation can be canceled by moving to the 2-Stroke (2S) cycle. Among many alternatives, the “Uniflow” scavenging system with exhaust poppet valves on the cylinder head allows the designer to reproduce the same identical combustion patterns of a 4-stroke RCCI engine, while increasing the indicated power output. The goal of the paper is to explore the potential of a 2-stroke RCCI engine, on the basis of a comprehensive experimental campaign carried out on a modified automotive 2.0 L, 4-stroke, four-cylinder, four-valve diesel engine. The developed prototype can run with one cylinder operating in 4-stroke RCCI mode (gasoline–diesel), while the others work in the standard diesel mode. A One Dimensional-Computational Fluid Dynamics (1D-CFD) model has been built to predict the performance of the same prototype, when operating all four cylinders in RCCI mode. In parallel, an equivalent 2-stroke RCCI virtual engine has been developed, by means of 1D-CFD simulations and empirical assumptions. A numerical comparison between the 4S and the 2S engines is finally presented, in terms of performance and emissions at full load. The study demonstrates that a 2S RCCI engine can maintain all of the advantages of the RCCI combustion, strongly reducing the penalization in terms of performance, in comparison to a standard 4S diesel engine.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. CO2 and Greenhouse Gas Emissions. Our World in Datahttps://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

2. Global Warming of 1.5 °Chttps://www.ipcc.ch/sr15/

3. Mitigation. UN Climate Change Conference (COP26) at the SEC—Glasgow 2021https://ukcop26.org/cop26-goals/mitigation/

4. COP26 Goals. UN Climate Change Conference (COP26) at the SEC—Glasgow 2021https://ukcop26.org/cop26-goals/

5. IJER editorial: The future of the internal combustion engine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3