Cell-to-Module Simulation Analysis for Optimizing the Efficiency and Power of the Photovoltaic Module

Author:

Yousuf HasnainORCID,Zahid Muhammad Aleem,Khokhar Muhammad Quddamah,Park Jinjoo,Ju Minkyu,Lim Donggun,Kim Youngkuk,Cho Eun-ChelORCID,Yi Junsin

Abstract

A 60-cell photovoltaic (PV) module was analyzed by optimizing the interconnection parameters of the solar cells to enhance the efficiency and increase the power of the PV module setup. The cell-to-module (CTM) losses and gains varied substantially during the various simulation iterations. Optimization was performed to inspect and augment the gain and loss parameters for the 60-cell PV module. The power and efficiency of the module were improved by refining several parameters, such as number of busbars, size of the contact pads, interconnected ribbon width, thickness of the core, and distance between the solar cells and strings, to obtain the maximum efficiency of 21.09%; the CTM efficiency achieved was 94.19% for the proposed strategy related to the common interconnection setup of the ribbon-based system. The CTM efficiency was improved by optimizing the geometrical, optical, and electrical parameters precisely, the power enhancement was up to 325.3 W, and a CTM power of 99.1% was achieved from a standard PV module with rectangular ribbon interconnections.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3