Intensity Analysis to Communicate Detailed Detection of Land Use and Land Cover Change in Chang-Zhu-Tan Metropolitan Region, China

Author:

Deng Zhiwei1ORCID,Quan Bin12ORCID

Affiliation:

1. College of Geography and Tourism, Hengyang Normal University, Hengyang 421002, China

2. Hengyang Base of International Centre on Space Technologies for Natural and Cultural Heritage under the Auspices of UNESCO, Hengyang 421002, China

Abstract

Quantifying the change in land use and land cover (LULC) is critical for revealing the impact of human activities on the environment of the Earth’s surface. Although some studies were conducted on the change in LULC in rapidly urbanizing areas, conventional methods could not provide a systematic understanding of the changes and their underlying causes. This study adopted an enhanced Intensity Analysis and landscape matrices to deeply explore the change information and expansion modes of LULC in the Chang-Zhu-Tan Metropolitan Region (CZTMR). This exploration was based on remote sensing images from the past 40 years and GIS tools. The results show that the overall change in the LULC accelerated during the period 1980–2020, with its intensity expanding by 16 times. The Built gain and the Crop loss were steadily active. The Built gain was derived mainly from Crop and Forest, and its mode was dominated by edge expansion. It was detected that the Built gain steadily targeted Crop but avoided Forest despite Built gaining a large area from Forest. The reason for this is because Forest initially had the largest area. The measurement results contribute to the formulation of urban plans and land policies for sustainable development in the CZTMR. Our study explained the evolution of Intensity Analysis and its analytical thought, which could be employed in other regions for the detection of land change to help decision makers develop more targeted and sustainable land management strategies.

Funder

key project of the Social Science Foundation of Hengyang

Open Foundation of Hengyang Base of International Centre on Space Technologies for Natural and Cultural Heritage under the auspices of UNESCO

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3