Application of a New Enhanced Deconvolution Method in Gearbox Fault Diagnosis

Author:

Wang Junyuan,Wang Jingtai,Du WenhuaORCID,Zhang Jiping,Wang Zhijian,Wang Guanjun,Li Tao

Abstract

When the mechanical transmission mechanism fails, such as gears and bearings in the gearbox, its vibration signal often appears as a periodic impact. Considering the influence of noise, however, the fault signal is often submerged in the noise, so it is necessary to propose a feasible and effective fault extraction method. MOMEDA (multipoint optimal minimum entropy deconvolution adjusted) overcomes the tedious iterative process of MED (minimum entropy deconvolution) and overcomes the resampling trouble in MCKD (maximum correlated kurtosis deconvolution). It is suitable for dealing with periodic impact signal. Besides, aiming at the poor ability of MOMEDA to capture the deconvolution result of target function in a strong noise environment, this paper proposes an improved MOMEDA gearbox fault feature extraction method. Considering that MOMEDA has poor anti-noise performance and can easily cause misdiagnosis in a strong noisy environment, this paper constructs an autoregressive mean sliding model to improve the noise immunity of MOMEDA. Firstly, the stability of the test signal is judged by the autocorrelation coefficient (ACF) and the partial correlation coefficient (PACF). Secondly, the ARMA (autoregressive moving average) model is constructed and a set of optimal model coefficients are obtained to filter the signal, which greatly improves MOMEDA’s ability to capture fault features. Thirdly, the fault feature is extracted by MOMEDA, and the fault information is extracted accurately under a strong noise environment. Finally, compared with AR-MED, ARMAMED, and other methods, the advantages of ARMAMOMEDA are verified. Moreover, the effectiveness and superiority of the proposed method are verified by simulation signals and experimental data from the Case Western Reserve University Bearing Data Center.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3