Abstract
In this paper we improve an efficient implicit surface reconstruction method based on the surface following method for the radial basis functions interpolant. The method balances the reconstruction efficiency and the evaluation efficiency in the process of surface following. The growing strategy of the surface following method combines both the evaluation and reconstruction processes. Based on the analysis of the black-box fast multipole method (FMM) operations, we improve the FMM procedures for single point evaluation. The goal is to ensure that one point evaluation of the method obtains an optimum efficiency, so that it can be efficiently applied to the voxel growing method. Combined with the single point FMM, we improve the voxel growing method without manually specifying the seed points, and the leaf growing method is developed to avoid a mass of redundant computation. It ensures a smaller number of evaluation points and a higher evaluation efficiency in surface following. The numerical results of several data sets showed the reliability and performance of the efficient implicit surface reconstruction method. Compared with the existing methods, the improved method performs a better time and space efficiency.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献