A Visible and Near-IR Tunnel Photosensor with a Nanoscale Metal Emitter: The Effect of Matching of Hot Electrons Localization Zones and a Strong Electrostatic Field

Author:

Yakunin AlexanderORCID,Aban’shin Nikolay,Akchurin Garif,Avetisyan Yuri,Loginov Alexander,Yuvchenko Sergey,Zarkov Sergey,Volchkov Sergey,Zimnyakov DmitryORCID

Abstract

The results of the research and design of a novel vacuum photosensor with a planar molybdenum blade structure are presented. The advanced prototype implements the principle of an increasing penetrability of the Schottky barrier for the metal–vacuum interfaces under the action of an external strong electrostatic field. Theoretical and experimental substantiation of the photosensor performance in a wide range of wavelengths (from 430 to 680 nm and from 800 to 1064 nm) beyond the threshold of the classical photoelectric effect is given. The finite element method was applied to calculate distribution of the optical and electrostatic fields inside the photosensor structure. The sensor current-to-light response was studied using the periodic pulsed irradiation with the tunable wavelength. It was shown that the nanoscale localization zones of two types are formed near the surface of the blade tip: the zone of an increased concentration of hot electrons localized inside the molybdenum blade, and the zone with an increased strength of the external electrostatic field localized outside the blade. In general, the mutual positions of these zones may not coincide, whereas the position of the first-type localization zone significantly varies with the changes in the wavelength of the irradiating light. This causes features in the spectrum of the quantum yield of the photosensor such as expressed non-monotonic behavior and occurrence of sharp dips. The design of the photosensor that provides matching of the positions for both types of localization zones was proposed; the manufactured prototypes of the designed device were experimentally studied. In the designed photosensor, the ballistic transport of photoelectrons in the vacuum gap with a strong field provides a possibility for the creation of ultra-fast optoelectronic devices, such as modulators, detectors, and generators.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3