Kinetics, Isotherms and Thermodynamic Modeling of Liquid Phase Adsorption of Crystal Violet Dye onto Shrimp-Waste in Its Raw, Pyrolyzed Material and Activated Charcoals

Author:

Rojas John,Suarez David,Moreno Alfredo,Silva-Agredo Javier,Torres-Palma Ricardo A.ORCID

Abstract

Shrimp waste and its charcoal derivatives were evaluated for the removal of crystal violet. Activation was conducted at 500 °C with phosphoric acid at the 1:2 and 1:3 ratios. Activated charcoals were more porous and had a more roughly surface containing mainly C, O, Ca N, and P. Equilibrium adsorption data were fitted using seven kinetic and six isotherms models. Activation created acidic moieties (>4700 µmol/g) and reduced the point of zero charge (<2.5). Freundlich isotherm best described the uptake of the dye onto the adsorbents suggesting a heterogeneous adsorption, whereas the Bangham and Avrami models best described the kinetics of adsorption process. An endothermic and spontaneous physisorption was responsible for the sorption phenomena in most adsorbents. The high removal of crystal violet was attributed to the high ionization capacity of the adsorbent coupled with the high external surface area (>44 m2/g). The best adsorption capacity (208 mg/g) was found for the activated and charred materials, whereas the lowest one (3.9 mg/g) was found for the pyrolyzed material. This research creates the possibility to deal with two environmental problems: (i) the reuse of shrimp waste and (ii) the removal of water pollutants such as crystal violet.

Funder

Colciencias

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3