Study of the Compression Behavior of Steel-Fiber Reinforced Concrete by Means of the Response Surface Methodology

Author:

de la Rosa Ángel,Ruiz GonzaloORCID,Poveda Elisa

Abstract

The compression behavior of steel-fiber reinforced concrete (SFRC) has been addressed exhaustively in recent decades thereby highlighting a variety of differences with regard to the effect that the addition of fiber has on it. In this paper, a detailed study of the subject is developed for which a database has been created, which includes 197 tests performed on cylindrical concrete specimens with dimensions of 150 × 300 mm 2 (diameter × height). By means of the response surface methodology, we disclose the relationship that exists between the geometric parameters of the fiber (length, diameter, and aspect ratio), their amount (fraction in volume), and some matrix parameters (compression resistance and maximum size of coarse aggregate) with the different compression responses of the SFRC, which are strength, elastic modulus, critical deformation under maximum load, and the volumetric deformation work in the pre- and post-peak branch. Linear polynomial models are chosen to adjust each response with the defined factors, and said variables are studied in a dimensional and non-dimensional format. From the results obtained, it is verified how the inclusion of steel-fibers produces notable improvements in ductility and the energy absorption capacity of the concrete when significantly increasing the works of volumetric deformation in the pre- and post-peak branch with respect to the matrix without fibers. In addition, a new model is analyzed, which describes the stress–strain curve of the compression behavior of the SFRC based on the increase of ductility and energy absorption. This model is characterized by a softening branch subsequent to the peak load determined by means of the residual compressive strength, a parameter that corresponds to the value of the compressive stress associated with a strain equal to three times that of the peak of the curve, which is significantly dependent on the aspect ratio and fiber content.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference72 articles.

1. Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes

2. ACI 544.4R-96 State of the Art Report on Fiber Reinforced Concrete,2002

3. The effect of steel-fibers on the compressive strength of concrete;Williamson,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3