Anomaly Detection in IoT Communication Network Based on Spectral Analysis and Hurst Exponent

Author:

Dymora PawełORCID,Mazurek MirosławORCID

Abstract

Internet traffic monitoring is a crucial task for the security and reliability of communication networks and Internet of Things (IoT) infrastructure. This description of the traffic statistics is used to detect traffic anomalies. Nowadays, intruders and cybercriminals use different techniques to bypass existing intrusion detection systems based on signature detection and anomalies. In order to more effectively detect new attacks, a model of anomaly detection using the Hurst exponent vector and the multifractal spectrum is proposed. It is shown that a multifractal analysis shows a sensitivity to any deviation of network traffic properties resulting from anomalies. Proposed traffic analysis methods can be ideal for protecting critical data and maintaining the continuity of internet services, including the IoT.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Ubiquitous Sensor Networks Traffic Models for Telemetry Applications, Smart Spaces and Next Generation Wired/Wireless Networking;Koucheryavy;Book Ser.,2011

2. Method for Handling Massive IoT Traffic in 5G Networks

3. Network Anomaly Detection Based on the Statistical Self-Similarity Factor, Analysis and Simulation of Electrical and Computer Systems Lecture Notes in Electrical Engineering;Mazurek,2015

4. Nowe metody modelowania samopodobnego ruchu w sieciach w oparciu o procesy Poissona z markowską modulacją;Wójcicki;Studia Inform.,2005

5. Wide Area Traffic: The Failure of Poisson Modeling;Paxson,1995

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3