Analysis of Methanol Gasoline by ATR-FT-IR Spectroscopy

Author:

XIA Qi,YUAN Lei-mingORCID,CHEN Xiaojing,MENG Liuwei,HUANG Guangzao

Abstract

Methanol gasoline blends are a more economical, and environmentally friendly fuels than gasoline alone, and are widely used in the transportation industry. The content of methanol in methanol gasoline plays an important role in ensuring the quality of gasoline. In some solutions, due to the shortage of energy and illegal profits, the problem of gasoline adulteration and its fineness, has received more and more attention, which would seriously affect the operating condition and service life of internal combustion engines. Therefore, it is very important to identify the correct level of gasoline. However, the traditional detection method is complex and time-consuming. To this end, the feasibility of using attenuated total reflectance Fourier transform infrared (ATR-FTIR) methods coupled with chemometrics methods were investigated to quantitatively and qualitatively analyze methanol gasoline. The qualitative analysis result of partial least squares discriminant analysis (PLS-DA) obtained 100% and 98.66% accuracy in the calibration set and the prediction set, respectively. As for quantitative analysis; two regression algorithms of partial least squares regression (PLSR) and the least square support vector machine (LS-SVM), as well as two variables selection methods of the successive projections algorithm (UVE) competitive adaptive reweighted sampling (CARS) and uninformative variable elimination (UVE) were combined to establish the quantitative model. By comparing the performance of the optimal models; the UVE-PLSR model performed best with a residual predictive deviation (RPD) value of 6.420. The qualitative and quantitative analysis results demonstrate the feasibility of using ATR-FTIR spectra to detect the methanol in methanol gasoline. It is believed that the promising IR spectra will be widely used in gasoline energy quality control in the further.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3