Theoretical-Numerical Investigation of a New Approach to Reconstruct the Temperature Field in PBF-LB/M Using Multispectral Process Monitoring

Author:

May Lisa1ORCID,Werz Martin1

Affiliation:

1. Materials Testing Institute, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany

Abstract

The monitoring of additive manufacturing processes such as powder bed fusion enables the detection of several process quantities important to the quality of the built part. In this context, radiation-based monitoring techniques have been used to obtain information about the melt pool and the general temperature distribution on the surface of the powder bed. High temporal and spatial resolution have been achieved at the cost of large storage requirements. This contribution aims to offer an alternative strategy of gaining information about the powder bed’s temperature field with sufficient resolution but with an economical amount of data. The investigated measurement setup uses a spectrometer to detect the spectral radiation intensities emitted by an area enclosing the melt pool and part of its surroundings. An analytical description of this process is presented, which shows that the measured spectral entities can be reconstructed by the Ritz method. It is also shown that the corresponding weighting factors can be physically interpreted as subdomains of constant temperature within the measurement area. Two different test cases are numerically analyzed, showing that the methodology allows for an approximation of the melt pool size while further assumptions remain necessary to reconstruct the actual temperature distribution.

Funder

Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3