A Novel Multi-Step Global Mechanism Scheme for n-Decane Combustion

Author:

Xiong Shaozhuan12,Bi Yantian2

Affiliation:

1. Research Center of Combustion Aerodynamics, Southwest University of Science and Technology, Mianyang 621000, China

2. Institute of Mechanics and Aerospace, Southwest University of Science and Technology, Mianyang 621000, China

Abstract

Based on the directed relation graph with error propagation (DRGEP) reduction method, a detailed mechanism consisting of 119 species and 527 reactions for n-decane was simplified. As a result, a skeletal mechanism comprising 32 species and 73 reactions was derived. Subsequently, the quasi-steady state approximation (QSSA) reduction method was employed to further simplify the skeletal mechanism, resulting in a reduced mechanism with 18 species and 14 global reactions. A comparison between the reduced mechanism, skeletal mechanism, and detailed mechanism revealed that the reduced and skeletal mechanisms successfully replicated the combustion characteristics of the detailed mechanism under a range of initial conditions. These models can be credibly incorporated into large-scale combustion simulation, serving as a solid foundation for enhancing computational efficiency.

Funder

The science and technology project of China National Petroleum Corporation division of Southwest Oil

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3