Nonadditive Entropy Application to Detrended Force Sensor Data to Indicate Balance Disorder of Patients with Vestibular System Dysfunction

Author:

Köse Harun Yaşar1ORCID,İkizoğlu Serhat2ORCID

Affiliation:

1. Department of Mechatronics Engineering, Faculty of Electric and Electronics, Istanbul Technical University (ITU), 34469 Istanbul, Türkiye

2. Department of Control and Automation Engineering, Faculty of Electric and Electronics, Istanbul Technical University (ITU), 34469 Istanbul, Türkiye

Abstract

The healthy function of the vestibular system (VS) is of vital importance for individuals to carry out their daily activities independently and safely. This study carries out Tsallis entropy (TE)-based analysis on insole force sensor data in order to extract features to differentiate between healthy and VS-diseased individuals. Using a specifically developed algorithm, we detrend the acquired data to examine the fluctuation around the trend curve in order to consider the individual’s walking habit and thus increase the accuracy in diagnosis. It is observed that the TE value increases for diseased people as an indicator of the problem of maintaining balance. As one of the main contributions of this study, in contrast to studies in the literature that focus on gait dynamics requiring extensive walking time, we directly process the instantaneous pressure values, enabling a significant reduction in the data acquisition period. The extracted feature set is then inputted into fundamental classification algorithms, with support vector machine (SVM) demonstrating the highest performance, achieving an average accuracy of 95%. This study constitutes a significant step in a larger project aiming to identify the specific VS disease together with its stage. The performance achieved in this study provides a strong motivation to further explore this topic.

Funder

Scientific and Technological Research Council of Türkiye

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3