A Novel General (n, n)-Threshold Multiple Secret Images Sharing Scheme Based on Information Hiding in the Sharing Domain

Author:

Xing FengyueORCID,Yan XuehuORCID,Yu Long,Li Longlong

Abstract

(k,n)-threshold secret image sharing (SIS) protects an image by dividing it into n shadow images. The secret image will be recovered as we gather k or more shadow images. In complex networks, the security, robustness and efficiency of protecting images draws more and more attention. Thus, we realize multiple secret images sharing (MSIS) by information hiding in the sharing domain (IHSD) and propose a novel and general (n,n)-threshold IHSD-MSIS scheme (IHSD-MSISS), which can share and recover two secret images simultaneously. The proposed scheme spends less cost on managing and identifying shadow images, and improves the ability to prevent malicious tampering. Moreover, it is a novel approach to transmit important images with strong associations. The superiority of (n,n)-threshold IHSD-MSISS is in fusing the sharing phases of two secret images by controlling randomness of SIS. We present a general construction model and algorithms of the proposed scheme. Sufficient theoretical analyses, experiments and comparisons show the effectiveness of the proposed scheme.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DSIS: A Novel (K,N) Threshold Deniable Secret Image Sharing Scheme with Lossless Recovery;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

2. Proposed Multilevel Secret Images-Sharing Scheme;Lecture Notes in Networks and Systems;2024

3. Blockchain-based authenticable (k,n) multi-secret image sharing scheme;Journal of Electronic Imaging;2023-09-20

4. Image encryption using XOR-based continuous tone MSS and Cellular Automata;2023 6th International Conference on Information Systems and Computer Networks (ISCON);2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3