Hierarchical Amplitude-Aware Permutation Entropy-Based Fault Feature Extraction Method for Rolling Bearings

Author:

Li ZheORCID,Cui Yahui,Li Longlong,Chen Runlin,Dong Liang,Du Juan

Abstract

In order to detect the incipient fault of rolling bearings and to effectively identify fault characteristics, based on amplitude-aware permutation entropy (AAPE), an enhanced method named hierarchical amplitude-aware permutation entropy (HAAPE) is proposed in this paper to solve complex time series in a new dynamic change analysis. Firstly, hierarchical analysis and AAPE are combined to excavate multilevel fault information, both low-frequency and high-frequency components of the abnormal bearing vibration signal. Secondly, from the experimental analysis, it is found that HAAPE is sensitive to the early failure of rolling bearings, which makes it suitable to evaluate the performance degradation of a bearing in its run-to-failure life cycle. Finally, a fault feature selection strategy based on HAAPE is put forward to select the bearing fault characteristics after the application of the least common multiple in singular value decomposition (LCM-SVD) method to the fault vibration signal. Moreover, several other entropy-based methods are also introduced for a comparative analysis of the experimental data, and the results demonstrate that HAAPE can extract fault features more effectively and with a higher accuracy.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3