Improvement of the Ship Emergency Response Procedure in Case of Collision Accident Considering Crack Propagation during Salvage Period

Author:

Gledić IvanaORCID,Mikulić Antonio,Parunov JoškoORCID

Abstract

Specialized procedures to help in the emergency response situations following ship accidents have been under development by the Classification Societies. Such procedures consider the hull-girder collapse as the most important failure mode, without the possibility of crack propagation caused by fluctuating wave loads. In the present study, the fatigue crack propagation in the main deck of the oil tanker damaged in collision during salvage is investigated. The shape and size of the damage are modelled using the realistic bow shape of the striking ship and historical data of ship accidents. The stress intensity factor (SIF) across the main deck of the struck ship is calculated numerically and by the method based on the available experimental results of the crack propagation in the stiffened panel. Fluctuating wave–induced stresses in short-term sea conditions during salvage are obtained by Monte Carlo simulation (MC) based on Rayleigh distribution. Cycle-by-cycle crack propagation is calculated using Paris law. Many salvage simulations are performed to cover different possible time-histories of the fatigue loading. Results of the analysis are presented as histogram of the crack increase during salvage. Parametric analysis is performed to investigate the influence of the sea state severity, initial crack size, and towing duration on the final crack size. The proposed procedure can be considered as a part of a software tool for emergency response action during salvage of damaged ship.

Funder

Hrvatska Zaklada za Znanost

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3