Noise Waveforms within Seabed Vibrations and Their Associated Evanescent Sound Fields

Author:

Hazelwood Richard,Macey Patrick

Abstract

While the effects of sound pressures in water have been studied extensively, very much less work has been done on seabed vibrations. Our previous work used finite element modeling to interpret the results of field trials, studying propagation through graded seabeds as excited by impulsive energy applied to a point. A new simulation has successfully replicated further features of the original observations, and more field work has addressed other questions. We have concentrated on the water-particle motion near the seabed, as this is well known to be critical for benthic species. The evanescent pressure sound fields set up as the impulsive vibration energy passes are expected to be important for the local species, such as crabs and flatfish. By comparison with effects occurring away from boundaries, these seismic interface waves create vigorous water-particle motion but proportionately less sound pressure. This comparative increase ratio exceeds 12 for unconsolidated sediment areas, as typically used for piling operations.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference25 articles.

1. MaRVEN—Environmental Impacts of Noise, Vibrations and Electromagnetic Emissions from Marine Renewable Energy;Thomsen,2015

2. How to set sound exposure criteria for fishes

3. The importance of particle motion to fishes and invertebrates

4. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs

5. Predicting and Mitigating Hydroacoustic Impacts on Fish from Pile Installations;Halvorsen,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3