Numerical Study of Efficiency Indices to Evaluate the Effect of Layout Mode of Artificial Reef Unit on Flow Field

Author:

Zhang Jiating,Zhu Lixin,Liang Zhenlin,Sun Liyuan,Nie Zhaoyi,Wang Jiahao,Xie Wude,Jiang Zhaoyang

Abstract

Artificial reefs (ARs) have been widely used to restore the seabed habitat and protect biodiversity. They can effectively increase the dissolved oxygen content in the bottom water layer by their disturbing effect of upwelling and downwelling. The bottom water is prone to hypoxia in summer due to the extreme weather of the global climate and excessive biomass in some marine ranching in northern China. Therefore, how to effectively use the upwelling effect of artificial reefs to alleviate this problem is a necessary subject of research. Generally, ARs are arranged by different intervals in a unit form on the seafloor, and the flow field effect is different from that of the individual reefs. However, few studies have been focused on the effect of layout mode on the flow field of a unit reef (UR). In this paper, we selected the interval between reefs (IR) and the angle of inflow (AI) as the influencing factors to study the flow field effect of UR. The upwelling and wake regions of 64 URs were presented by the efficiency and disturbance indices related to the flow characteristics and proposed an optimal layout mode having the best performance of the upwelling effect. The results showed that the interactions among the AI, the transverse, and longitudinal IRs were significant, and the AI has a significant influence on the flow field. These indices were effective and contribute to the layout optimization of UR. The AI close to 45° has a significant influence on the flow field effect of UR.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3