Ocean Acidification and Direct Interactions Affect Coral, Macroalga, and Sponge Growth in the Florida Keys

Author:

Page Heather N.,Hewett Clay,Tompkins Hayden,Hall Emily R.ORCID

Abstract

Coral reef community composition, function, and resilience have been altered by natural and anthropogenic stressors. Future anthropogenic ocean and coastal acidification (together termed “acidification”) may exacerbate this reef degradation. Accurately predicting reef resilience requires an understanding of not only direct impacts of acidification on marine organisms but also indirect effects on species interactions that influence community composition and reef ecosystem functions. In this 28-day experiment, we assessed the effect of acidification on coral–algal, coral–sponge, and algal–sponge interactions. We quantified growth of corals (Siderastrea radians), fleshy macroalgae (Dictyota spp.), and sponges (Pione lampa) that were exposed to local summer ambient (603 μatm) or elevated (1105 μatm) pCO2 seawater. These species are common to hard-bottom communities, including shallow reefs, in the Florida Keys. Each individual was maintained in isolation or paired with another organism. Coral growth (net calcification) was similar across seawater pCO2 and interaction treatments. Fleshy macroalgae had increased biomass when paired with a sponge but lost biomass when growing in isolation or paired with coral. Sponges grew more volumetrically in the elevated seawater pCO2 treatment (i.e., under acidification conditions). Although these results are limited in temporal and spatial scales due to the experimental design, they do lend support to the hypothesis that acidification may facilitate a shift towards increased sponge and macroalgae abundance by directly benefiting sponge growth which in turn may provide more dissolved inorganic nitrogen to macroalgae in the Florida Keys.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3