Physicochemical Property Indexes of Sediment Lixiviums in Sea–Land Interaction Zone of Subei Basin and Their Significance to Transgression

Author:

Shu Qiang,Zhang Shunjie,Chen Ye

Abstract

In current studies, the physicochemical properties of water, such as total dissolved solids, salinity, and electrical conductivity, are used mainly to investigate changes in the properties of surface water and groundwater. In our experimental study, we aimed to introduce the physicochemical properties of water bodies into the field of paleoenvironmental changes. We employed the physicochemical property indexes of sediment lixiviums in two research sections of the sea–land interaction zone in the eastern margin of the Subei Basin (China). Preliminary tests determined that the optimal solvent for preparing the sediment lixiviums is ultrapure water; the use of this water can prevent errors caused by soluble solids in the solvent. Using a container with a lid to prepare the sediment lixiviums could reduce errors caused by evaporation. Furthermore, we determined the appropriate process and duration for testing the physicochemical properties of sediment lixiviums. The optimal time for testing the physicochemical properties was 120 h (mixture fully stirred daily) or 168 h (no stirring). The weight of the sediment, volume of the solvent, and test time should be consistent in the same research section. Comparing the physicochemical property indexes of sediment lixiviums with geochemical elements and diatom indicators, we found that these indexes show obvious indications of transgression, and have an obvious advantage in indicating transgression.

Funder

National Natural Science Foundation of China

Marine science and technology innovation project of Jiangsu province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Climate Change and Marine Geological Dynamics;Journal of Marine Science and Engineering;2021-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3