Author:
Konoplin Alexander,Filaretov Vladimir,Yurmanov Alexander
Abstract
A novel method for supervisory control of multilink manipulators mounted on underwater vehicles is considered. This method is designed to significantly increase the level of automation of manipulative operations, by the building of motion trajectories for a manipulator working tool along the surfaces of work objects on the basis of target indications given by the operator. This is achieved as follows: The operator targets the camera (with changeable spatial orientation of optical axis) mounted on the vehicle at the work object, and uses it to set one or more working point on the selected object. The geometric shape of the object in the work area is determined using clouds of points obtained from the technical vision system. Depending on the manipulative task set, the spatial motion trajectories and the orientation of the manipulator working tool are automatically set using the spatial coordinates of these points lying on the work object surfaces. The designed method was implemented in the C++ programming language. A graphical interface has also been created that provides rapid testing of the accuracy of overlaying the planned trajectories on the mathematically described surface of a work object. Supervisory control of an underwater manipulator was successfully simulated in the V-REP environment.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献