Identification of Potential lncRNA-miRNA-mRNA Regulatory Network Contributing to Arrhythmogenic Right Ventricular Cardiomyopathy

Author:

Li Haotong1ORCID,Song Shen1,Shi Anteng1,Hu Shengshou1

Affiliation:

1. State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China

Abstract

Arrhythmogenic right ventricular cardiomyopathy (ARVC) can lead to sudden cardiac death and life-threatening heart failure. Due to its high fatality rate and limited therapies, the pathogenesis and diagnosis biomarker of ARVC needs to be explored urgently. This study aimed to explore the lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network in ARVC. The mRNA and lncRNA expression datasets obtained from the Gene Expression Omnibus (GEO) database were used to analyze differentially expressed mRNA (DEM) and lncRNA (DElnc) between ARVC and non-failing controls. Differentially expressed miRNAs (DEmiRs) were obtained from the previous profiling work. Using starBase to predict targets of DEmiRs and intersecting with DEM and DElnc, a ceRNA network of lncRNA-miRNA-mRNA was constructed. The DEM and DElnc were validated by real-time quantitative PCR in human heart tissue. Protein–protein interaction network and weighted gene co-expression network analyses were used to identify hub genes. A logistic regression model for ARVC diagnostic prediction was established with the hub genes and their ceRNA pairs in the network. A total of 448 DEMs (282 upregulated and 166 downregulated) were identified, mainly enriched in extracellular matrix and fibrosis-related GO terms and KEGG pathways, such as extracellular matrix organization and collagen fibril organization. Four mRNAs and two lncRNAs, including COL1A1, COL5A1, FBN1, BGN, XIST, and LINC00173 identified through the ceRNA network, were validated by real-time quantitative PCR in human heart tissue and used to construct a logistic regression model. Good ARVC diagnostic prediction performance for the model was shown in both the training set and the validation set. The potential lncRNA-miRNA-mRNA regulatory network and logistic regression model established in our study may provide promising diagnostic methods for ARVC.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3