Soft Quantization Using Entropic Regularization

Author:

Lakshmanan Rajmadan1ORCID,Pichler Alois1ORCID

Affiliation:

1. Faculty of Mathematics, Technische Universität Chemnitz, D-09111 Chemnitz, Germany

Abstract

The quantization problem aims to find the best possible approximation of probability measures on Rd using finite and discrete measures. The Wasserstein distance is a typical choice to measure the quality of the approximation. This contribution investigates the properties and robustness of the entropy-regularized quantization problem, which relaxes the standard quantization problem. The proposed approximation technique naturally adopts the softmin function, which is well known for its robustness from both theoretical and practicability standpoints. Moreover, we use the entropy-regularized Wasserstein distance to evaluate the quality of the soft quantization problem’s approximation, and we implement a stochastic gradient approach to achieve the optimal solutions. The control parameter in our proposed method allows for the adjustment of the optimization problem’s difficulty level, providing significant advantages when dealing with exceptionally challenging problems of interest. As well, this contribution empirically illustrates the performance of the method in various expositions.

Funder

DFG, German Research Foundation

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference29 articles.

1. A Classification of Disintegrations of Measures;Graf;Contemp. Math.,1989

2. Greedy vector quantization;Luschgy;J. Approx. Theory,2015

3. New approach to greedy vector quantization;Luschgy;Bernoulli,2022

4. Graf, S., and Luschgy, H. (2000). Foundations of Quantization for Probability Distributions, Springer. Lecture Notes in Mathematics.

5. Measuring distribution model risk;Breuer;Math. Financ.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3