Abstract
In large-scale arable farming, multiple sequential operations involving multiple machines must be carried out simultaneously due to restrictions of short time windows. However, the coordination and planning of multiple sequential operations is a nontrivial task for farmers, since each operation may have its own set of operational features, e.g., operating width and turning radius. Taking the two sequential operations—hoeing cultivation and seeding—as an example, the seeder has double the width of the hoeing cultivator, and the seeder must remain idle while waiting for the hoeing cultivator to finish two rows before it can commence its seeding operation. A flow-shop working mode can coordinate multiple machines in multiple operations within a field when different operations have different implement widths. To this end, an auto-steering-based collaborative operating system for fleet management (FMCOS) was developed to realize an in-field flow-shop working mode, which is often adopted by the scaled agricultural machinery cooperatives. This paper proposes the structure and composition of the FMCOS, the method of operating strip segmenting, and a new algorithm for strip state updating between successive field operations under an optimal strategy for waiting time conditioning between sequential operations. A simulation model was developed to verify the state-updating algorithm. Then, the prototype system of FMCOS was combined with auto-steering systems on tractors, and the collaborative operating system for the server was integrated. Three field experiments of one operation, two operations, and three operations were carried out to verify the functionality and performance of FMCOS. The results of the experiment showed that the FMCOS could coordinate in-field fleet operations while improving both the job quality and the efficiency of fleet management by adopting the flow-shop working mode.
Funder
National Key Research and Development Program of China
Chinese Universities Scientific Fund
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献