A Cloud-Based In-Field Fleet Coordination System for Multiple Operations

Author:

Wu Caicong,Chen Zhibo,Wang Dongxu,Song Bingbing,Liang Yajie,Yang Lili,Bochtis Dionysis D.ORCID

Abstract

In large-scale arable farming, multiple sequential operations involving multiple machines must be carried out simultaneously due to restrictions of short time windows. However, the coordination and planning of multiple sequential operations is a nontrivial task for farmers, since each operation may have its own set of operational features, e.g., operating width and turning radius. Taking the two sequential operations—hoeing cultivation and seeding—as an example, the seeder has double the width of the hoeing cultivator, and the seeder must remain idle while waiting for the hoeing cultivator to finish two rows before it can commence its seeding operation. A flow-shop working mode can coordinate multiple machines in multiple operations within a field when different operations have different implement widths. To this end, an auto-steering-based collaborative operating system for fleet management (FMCOS) was developed to realize an in-field flow-shop working mode, which is often adopted by the scaled agricultural machinery cooperatives. This paper proposes the structure and composition of the FMCOS, the method of operating strip segmenting, and a new algorithm for strip state updating between successive field operations under an optimal strategy for waiting time conditioning between sequential operations. A simulation model was developed to verify the state-updating algorithm. Then, the prototype system of FMCOS was combined with auto-steering systems on tractors, and the collaborative operating system for the server was integrated. Three field experiments of one operation, two operations, and three operations were carried out to verify the functionality and performance of FMCOS. The results of the experiment showed that the FMCOS could coordinate in-field fleet operations while improving both the job quality and the efficiency of fleet management by adopting the flow-shop working mode.

Funder

National Key Research and Development Program of China

Chinese Universities Scientific Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3