A Modeling Approach for Predicting the Resolution Capability in Terrestrial Laser Scanning

Author:

Chaudhry SukantORCID,Salido-Monzú DavidORCID,Wieser AndreasORCID

Abstract

The minimum size of objects or geometrical features that can be distinguished within a laser scanning point cloud is called the resolution capability (RC). Herein, we develop a simple analytical expression for predicting the RC in angular direction for phase-based laser scanners. We start from a numerical approximation of the mixed-pixel bias which occurs when the laser beam simultaneously hits surfaces at grossly different distances. In correspondence with previous literature, we view the RC as the minimum angular distance between points on the foreground and points on the background which are not (severely) affected by a mixed-pixel bias. We use an elliptical Gaussian beam for quantifying the effect. We show that the surface reflectivities and the distance step between foreground and background have generally little impact. Subsequently, we derive an approximation of the RC and extend it to include the selected scanning resolution, that is, angular increment. We verify our model by comparison to the resolution capabilities empirically determined by others. Our model requires parameters that can be taken from the data sheet of the scanner or approximated using a simple experiment. We describe this experiment herein and provide the required software on GitHub. Our approach is thus easily accessible, enables the prediction of the resolution capability with little effort and supports assessing the suitability of a specific scanner or of specific scanning parameters for a given application.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3