Refining Altimeter-Derived Gravity Anomaly Model from Shipborne Gravity by Multi-Layer Perceptron Neural Network: A Case in the South China Sea

Author:

Zhu Chengcheng,Guo JinyunORCID,Yuan Jiajia,Jin Xin,Gao Jinyao,Li Chengming

Abstract

Shipborne gravity can be used to refine altimeter-derived gravity whose accuracy is low in shallow waters and areas with complex submarine topography. As altimeter-derived gravity only within a small radius around the shipborne data can be corrected by traditional methods, a new method based on multi-layer perceptron (MLP) neural network is proposed to refine the altimeter-derived gravity. Input variables of MLP include the positional information at observation points and geophysical information (from our own South China Sea gravity anomaly model (SCSGA) V1.0 and bathymetry model ETOPO1) at grid points around observation points. Output variables of MLP are the refined residual gravity anomalies at observation points. Training shipborne data are classified into four cases to train four MLP models, which are used to predict the refined gravity anomaly model SCSGA V1.1. Then all of the training shipborne data are used for training an MLP model to predict the refined gravity anomaly model SCSGA V1.2. Assessed by testing shipborne data, the accuracy of SCSGA V1.2 is 0.14 mGal higher than that of SCSGA V1.0, and similar to that of SCSGA V1.1. Compared with the original gravity anomaly model (SCSGA V1.0), the accuracy of the refined gravity anomaly model (SCSGA V1.2) by MLP is improved by 4.4% in areas where the training data are concentrated, and also improved by 2.2% in other areas. Therefore, the method of MLP can be used to refine the altimeter-derived gravity model by shipborne gravity, overcoming the problem of limited correction radius for traditional methods.

Funder

National Natural Science Foundation of China

SDUST Research Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3