Using UAV LiDAR to Extract Vegetation Parameters of Inner Mongolian Grassland

Author:

Zhang XiangORCID,Bao Yuhai,Wang DongliangORCID,Xin Xiaoping,Ding Lei,Xu Dawei,Hou Lulu,Shen Jie

Abstract

The accurate estimation of grassland vegetation parameters at a high spatial resolution is important for the sustainable management of grassland areas. Unmanned aerial vehicle (UAV) light detection and ranging (LiDAR) sensors with a single laser beam emission capability can rapidly detect grassland vegetation parameters, such as canopy height, fractional vegetation coverage (FVC) and aboveground biomass (AGB). However, there have been few reports on the ability to detect grassland vegetation parameters based on RIEGL VUX-1 UAV LiDAR (Riegl VUX-1) systems. In this paper, we investigated the ability of Riegl VUX-1 to model the AGB at a 0.1 m pixel resolution in the Hulun Buir grazing platform under different grazing intensities. The LiDAR-derived minimum, mean, and maximum canopy heights and FVC were used to estimate the AGB across the entire grazing platform. The flight height of the LiDAR-derived vegetation parameters was also analyzed. The following results were determined: (1) The Riegl VUX-1-derived AGB was predicted to range from 29 g/m2 to 563 g/m2 under different grazing conditions. (2) The LiDAR-derived maximum canopy height and FVC were the best predictors of grassland AGB (R2 = 0.54, root-mean-square error (RMSE) = 64.76 g/m2). (3) For different UAV flight altitudes from 40 m to 110 m, different flight heights showed no major effect on the derived canopy height. The LiDAR-derived canopy height decreased from 9.19 cm to 8.17 cm, and the standard deviation of the LiDAR-derived canopy height decreased from 3.31 cm to 2.35 cm with increasing UAV flight altitudes. These conclusions could be useful for estimating grasslands in smaller areas and serving as references for other remote sensing datasets for estimating grasslands in larger areas.

Funder

National Key Research and Development Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3