Evaluating the Near and Mid Infrared Bi-Spectral Space for Assessing Fire Severity and Comparison with the Differenced Normalized Burn Ratio

Author:

van Gerrevink Max J.ORCID,Veraverbeke SanderORCID

Abstract

Fire severity, defined as the degree of environmental change caused by a fire, is a critical fire regime attribute of interest to fire emissions modelling and post-fire rehabilitation planning. Remotely sensed fire severity is traditionally assessed by the differenced normalized burn ratio (dNBR). This spectral index captures fire-induced reflectance changes in the near infrared (NIR) and short-wave infrared (SWIR) spectral regions. This study evaluates a spectral index based on a band combination including the NIR and mid infrared (MIR) spectral regions, the differenced normalized difference vegetation index with mid infrared (dNDVIMID), to assess fire severity. This evaluation capitalized upon the unique opportunity stemming from the pre- and post-fire airborne acquisitions over the Rim (2013) and King (2014) fires in California with the MODIS/ASTER Airborne Simulator (MASTER) instrument. The field data consist of 85 Geometrically structured Composite Burn Index (GeoCBI) plots. In addition, six different index combinations, respectively three with a NIR–SWIR combination and three with a NIR–MIR combination, were evaluated based on the optimality of fire-induced spectral displacements. The optimality statistic ranges between zero and one, with values of one representing pixel displacements that are unaffected by noise. The results show that the dNBR demonstrated a stronger relationship with GeoCBI field data when field measurements over the two fire scars were combined than the dNDVIMID approaches. The results yielded an R2 of 0.68 based on a saturated growth model for the best performing dNBR index, whereas the performance of the dNDVIMID indices was lower with an R2 = 0.61 for the best performing dNDVIMID index. The dNBR also outperformed the dNDVIMID in terms of spectral optimality across both fires. The best performing dNBR index yielded median optimality statistics of 0.56 over the Rim and 0.60 over the King fire. The best performing dNDVIMID index recorded optimality values of 0.49 over the Rim and 0.46 over the King fire. We also found that the dNBR approach led to considerable differences in the form of the relationship with the GeoCBI between the two fires, whereas the dNDVIMID approach yielded comparable relationships with the GeoCBI over the two fires. This suggests that the dNDVIMID approach, despite its slightly lower performance than the dNBR, may be a more robust method for estimating and comparing fire severity over large regions. This premise needs additional verification when more air- or spaceborne imagery with NIR and MIR bands will become available with a spatial resolution that allows ground truthing of fire severity.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3