Effects of Differences in Structure from Motion Software on Image Processing of Unmanned Aerial Vehicle Photography and Estimation of Crown Area and Tree Height in Forests

Author:

Kameyama Shohei,Sugiura KatsuakiORCID

Abstract

This study examines the effects of differences in structure from motion (SfM) software on image processing of aerial images by unmanned aerial vehicles (UAV) and the resulting estimations of tree height and tree crown area. There were 20 flight conditions for the UAV aerial images, which were a combination of five conditions for flight altitude, two conditions for overlap, and two conditions for side overlap. Images were then processed using three SfM programs (Terra Mapper, PhotoScan, and Pix4Dmapper). The tree height and tree crown area were determined, and the SfM programs were compared based on the estimations. The number of densified point clouds for PhotoScan (160 × 105 to 50 × 105) was large compared to the two other two SfM programs. The estimated values of crown area and tree height by each SfM were compared via Bonferroni multiple comparisons (statistical significance level set at p < 0.05). The estimated values of canopy area showed statistically significant differences (p < 0.05) in 14 flight conditions for Terra Mapper and PhotoScan, 16 flight conditions for Terra Mapper and Pix4Dmapper, and 11 flight conditions for PhotoScan and Pix4Dmappers. In addition, the estimated values of tree height showed statistically significant differences (p < 0.05) in 15 flight conditions for Terra Mapper and PhotoScan, 19 flight conditions for Terra Mapper and Pix4Dmapper, and 20 flight conditions for PhotoScan and Pix4Dmapper. The statistically significant difference (p < 0.05) between the estimated value and measured value of each SfM was confirmed under 18 conditions for Terra Mapper, 20 conditions for PhotoScan, and 13 conditions for Pix4D. Moreover, the RMSE and rRMSE values of the estimated tree height were 5–6 m and 20–28%, respectively. Although the estimation accuracy of any SfM was low, the estimated tree height by Pix4D in many flight conditions had smaller RMSE values than the other software. As statistically significant differences were found between the SfMs in many flight conditions, we conclude that there were differences in the estimates of crown area and tree height depending on the SfM used. In addition, Pix4Dmapper is suitable for estimating forest information, such as tree height, and PhotoScan is suitable for detailed monitoring of disaster areas.

Funder

Nihon University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3