High Accuracy Interpolation of DEM Using Generative Adversarial Network

Author:

Yan Li,Tang Xingfen,Zhang Yi

Abstract

Digital elevation model (DEM) interpolation is aimed at predicting the elevation values of unobserved locations, given a series of collected points. Over the years, the traditional interpolation methods have been widely used but can easily lead to accuracy degradation. In recent years, generative adversarial networks (GANs) have been proven to be more efficient than the traditional methods. However, the interpolation accuracy is not guaranteed. In this paper, we propose a GAN-based network named gated and symmetric-dilated U-net GAN (GSUGAN) for improved DEM interpolation, which performs visibly and quantitatively better than the traditional methods and the conditional encoder-decoder GAN (CEDGAN). We also discuss combinations of new techniques in the generator. This shows that the gated convolution and symmetric dilated convolution structure perform slightly better. Furthermore, based on the performance of the different methods, it was concluded that the Convolutional Neural Network (CNN)-based method has an advantage in the quantitative accuracy but the GAN-based method can obtain a better visual quality, especially in complex terrains. In summary, in this paper, we propose a GAN-based network for improved DEM interpolation and we further illustrate the GAN-based method’s performance compared to that of the CNN-based method.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference38 articles.

1. Influence of DEM interpolation methods in drainage analysis;Peralvo;Gis Hydro,2004

2. DEM production methods and sources;Nelson;Dev. Soil Sci.,2009

3. A comparative analysis of different DEM interpolation methods;Arun;Egypt. J. Remote Sens. Space Sci.,2013

4. Digital Terrain Modeling: Principles and Methodology;Li,2004

5. Spatial interpolation;Mitas;Geogr. Inf. Syst. Princ. Tech. Manag. Appl.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3