Cluster Content Caching: A Deep Reinforcement Learning Approach to Improve Energy Efficiency in Cell-Free Massive Multiple-Input Multiple-Output Networks

Author:

Tan Fangqing1ORCID,Peng Yuan1,Liu Qiang2

Affiliation:

1. Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin 541004, China

2. College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

With the explosive growth of micro-video applications, the transmission burden of fronthaul and backhaul links is increasing, and meanwhile, a lot of energy consumption is also generated. For reducing energy consumption and transmission delay burden, we propose a cell-free massive multiple-input multiple-output (CF-mMIMO) system in which the cache on the access point (AP) is used to reduce the load on the link. In this paper, a total energy efficiency (EE) model of a cache-assisted CF-mMIMO system is established. When optimizing EE, forming the co-operation cluster is critical. Therefore, we propose an energy-efficient joint design of content caching, AP clustering, and low-resolution digital-to-analog converter (DAC) in a cache-assisted CF-mMIMO network based on deep reinforcement learning. This scheme can effectively cache content in APs and select the appropriate DAC resolution. Then, taking into account the channel state information and user equipment (UE)’s content request preference, a deep deterministic policy gradient algorithm is used to jointly optimize the cache strategy, AP clustering, and DAC resolution decisions. Simulation results show that the energy efficiency of the proposed scheme is 4% higher than that of other schemes without the resolution optimization and is much higher than that of the only AP clustering without the joint design of content caching and channel quality.

Funder

National Natural Science Foundation of China

Director Foundation of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3