Unsupervised Mixture Models on the Edge for Smart Energy Consumption Segmentation with Feature Saliency

Author:

Al-Bazzaz Hussein1ORCID,Azam Muhammad1,Amayri Manar1,Bouguila Nizar1ORCID

Affiliation:

1. Concordia’s Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC H3G 1M8, Canada

Abstract

Smart meter datasets have recently transitioned from monthly intervals to one-second granularity, yielding invaluable insights for diverse metering functions. Clustering analysis, a fundamental data mining technique, is extensively applied to discern unique energy consumption patterns. However, the advent of high-resolution smart meter data brings forth formidable challenges, including non-Gaussian data distributions, unknown cluster counts, and varying feature importance within high-dimensional spaces. This article introduces an innovative learning framework integrating the expectation-maximization algorithm with the minimum message length criterion. This unified approach enables concurrent feature and model selection, finely tuned for the proposed bounded asymmetric generalized Gaussian mixture model with feature saliency. Our experiments aim to replicate an efficient smart meter data analysis scenario by incorporating three distinct feature extraction methods. We rigorously validate the clustering efficacy of our proposed algorithm against several state-of-the-art approaches, employing diverse performance metrics across synthetic and real smart meter datasets. The clusters that we identify effectively highlight variations in residential energy consumption, furnishing utility companies with actionable insights for targeted demand reduction efforts. Moreover, we demonstrate our method’s robustness and real-world applicability by harnessing Concordia’s High-Performance Computing infrastructure. This facilitates efficient energy pattern characterization, particularly within smart meter environments involving edge cloud computing. Finally, we emphasize that our proposed mixture model outperforms three other models in this paper’s comparative study. We achieve superior performance compared to the non-bounded variant of the proposed mixture model by an average percentage improvement of 7.828%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised Adversarial Domain Adaptation for Estimating Occupancy and Recognizing Activities in Smart Buildings;Proceedings of the 2024 9th International Conference on Intelligent Information Technology;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3