Author:
Wang Qiubao,Zhang Xing,Yang Yuejuan
Abstract
This paper presents the dynamic behaviors of a second-order asymmetric stochastic delay system with a Duffing oscillator as well as through the detection of weak signals, which are analyzed theoretically and numerically. The dynamic behaviors of the asymmetric system are analyzed based on the stochastic center manifold, together with Hopf bifurcation. Numerical analysis revealed that the time delay could enhance the noise immunity of the asymmetric system so as to enhance the asymmetric system’s ability to detect weak signals. The frequency of the weak signal under noise excitation was detected through the ‘act-and-wait’ method. The small amplitude was detected through the transition from the chaotic to the periodic state. Theoretical analysis and numerical simulation indicate that the application of the asymmetric Duffing oscillator with delay to detect weak signal is feasible.
Funder
the Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献