KPI-TSAD: A Time-Series Anomaly Detector for KPI Monitoring in Cloud Applications

Author:

Qiu Juan,Du Qingfeng,Qian Chongshu

Abstract

Accurately detecting anomalies and timely interventions are critical for cloud application maintenance. Traditional methods for performance anomaly detection based on thresholds and rules work well for simple key performance indicator (KPI) monitoring. Unfortunately, it is difficult to find the appropriate threshold levels when there are significant differences between KPI values at different times during the day or when there are significant fluctuations stemming from different usage patterns. Therefore, anomaly detection presents a challenge for all types of temporal data, particularly when non-stationary time series have special adaptability requirements or when the nature of potential anomalies is vaguely defined or unknown. To address this limitation, we propose a novel anomaly detector (called KPI-TSAD) for time-series KPIs based on supervised deep-learning models with convolution and long short-term memory (LSTM) neural networks, and a variational auto-encoder (VAE) oversampling model was used to address the imbalanced classification problem. Compared with other related research on Yahoo’s anomaly detection benchmark datasets, KPI-TSAD exhibited better performance, with both its accuracy and F-score exceeding 0.90 on the A1benchmark and A2Benchmark datasets. Finally, KPI-TSAD continued to perform well on several KPI monitoring datasets from real production environments, with the average F-score exceeding 0.72.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

1. Auto-encoding variational bayes;Kingma;arXiv,2013

2. A provider-side view of web search response time

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biosensor-Based Drones Anomaly Detection Integration for Sustainable Agriculture Development;Advances in Environmental Engineering and Green Technologies;2024-08-30

2. Machine Learning Algorithms for Attack and Anomaly Detection in IoT;Lecture Notes in Electrical Engineering;2023-11-02

3. Unbalanced regression sample generation algorithm based on confrontation;Information Sciences;2023-09

4. Study and Development of Intelligent KPI Management System for Discrete Manufacturing Enterprises in Industry 4.0;2023 4th International Conference on Mechatronics Technology and Intelligent Manufacturing (ICMTIM);2023-05-26

5. A Systematic Review on Anomaly Detection;International Journal of Advanced Research in Science, Communication and Technology;2023-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3