Histological Evaluation of a New Beta-Tricalcium Phosphate/Hydroxyapatite/Poly (1-Lactide-Co-Caprolactone) Composite Biomaterial in the Inflammatory Process and Repair of Critical Bone Defects

Author:

Martinez Elizabeth FerreiraORCID,Rodrigues Ana Elisa Amaro,Teixeira Lucas Novaes,Esposito Andrea Rodrigues,Cabrera Walter Israel Rojas,Demasi Ana Paula Dias,Passador-Santos FabricioORCID

Abstract

Background: The use of biomaterials is commonplace in dentistry for bone regeneration. The aim of this study was to evaluate the performance of a new alloplastic material for bone repair in critical defects and to evaluate the extent of the inflammatory process. Methods: Forty-five New Zealand rabbits were divided into five groups according to evaluation time (7, 14, 30, 60, 120 days), totaling 180 sites with six-millimeter diameter defects in their tibiae. The defects were filled with alloplastic material consisting of poly (lactide-co-caprolactone), beta-tricalcium phosphate, hydroxyapatite and nano-hydroxyapatite (BTPHP) in three different presentations: paste, block, and membrane. Comparisons were established with reference materials, such as Bio-ossTM, Bio-oss CollagenTM, and Bio-gideTM, respectively. The samples were HE-stained and evaluated for inflammatory infiltrate (scored for intensity from 0 to 3) and the presence of newly formed bone at the periphery of the defects. Results: Greater bone formation was observed for the alloplastic material and equivalent inflammatory intensity for both materials, regardless of evaluation time. At 30 days, part of the synthetic biomaterial, regardless of the presentation, was resorbed. Conclusions: We concluded that this novel alloplastic material showed osteoconductive potential, biocompatibility, low inflammatory response, and gradual resorption, thus an alternative strategy for guided bone regeneration.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3