Lattice-Boltzmann and Eulerian Hybrid for Solid Burning Simulation

Author:

Jo EunchanORCID,Kim Byungmoon,Song Oh-YoungORCID

Abstract

We propose a new hybrid simulation method to model burning solid interactions. Unlike gas fuel, fire and smoke interactions that have been relatively well studied in the past, simulations of solid fuel combustion processes remain largely unaddressed. These include pyrolysis/smoldering, interactions with oxygen and flow inside porous solid. To advance this simulation problem, we designed a new hybrid of the Lattice-Boltzmann method (LBM) and a Eulerian grid based Navier-Stokes equation (NSE). It uses the LBM, which has symmetrical directions of particle velocities in a cell, for inside the solid fuel and the NSE, which has a representative velocity in a cell, for outside the solid. At the interface where the two methods join, we develop a novel method to exchange physical quantities and show a natural transition between the two methods. Since LBM allows us to directly manage the quantity of exchanges from the microscopic perspective, that is, between lattice points, we can easily simulate the burning speed and the shape change of burning an inhomogeneous solid. Also, we derive an LBM version of the previously proposed porous Navier-Stokes equation to simulate gas flow inside the porous solid. In addition, we use the NS solver outside the solid where macroscopic behavior is much more dominant and, hence, LBM is less efficient than NS solver. Our results show us the physical stability and accuracy and visual realism.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fire evacuation integration modelling in subway station using the lattice Boltzmann method;Proceedings of the Institution of Civil Engineers - Transport;2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3